Chem. Ber. 106, 2001-2008 (1973)

Elektrophile Cyclodimerisierungen von n-Alkylacetylenen mit Chlorwasserstoff²⁾

Karl Griesbaum* und Maan El-Abed¹⁾

Bereich Petrochemie des Engler-Bunte-Instituts der Universität Karlsruhe (T. H.)

Eingegangen am 2. März 1973

Bei den Umsetzungen von wasserfreiem Chlorwasserstoff mit 1-Alkinen von Propin bis 1-Hexin in flüssiger Phase bildeten sich neben den einfachen Mono- (3) und Diaddukten (8) in jedem Falle auch beachtliche Mengen der jeweiligen stereoisomeren 1,3-Dialkyl-1,3-dichlorcyclobutane 9 und 10. Aus 1-Butin, 1-Pentin und 1-Hexin entstanden außerdem die entsprechenden stereoisomeren 2-Chlor-2-alkene 6 und 7.

Electrophilic Cyclodimerisations of n-Alkylacetylenes with Hydrogen Chloride²⁾

The liquid phase reactions of nonaqueous hydrogen chloride with the series of the 1-alkynes from propyne to 1-hexyne yielded, in addition to the simple mono- (3) and diadducts (8), considerable amounts of the corresponding stereoisomeric 1,3-dialkyl-1,3-dichlorocyclobutanes 9 and 10. From 1-butyne, 1-pentyne and 1-hexyne, the corresponding stereoisomeric 2-chloro-2-alkenes 6 and 7 were also obtained.

1. Einleitung

Die elektrophile Addition von wasserfreiem Bromwasserstoff an Propin in der flüssigen Phase lieferte neben den einfachen Addukten 2-Brompropen und 2,2-Dibrompropan die Cyclodimeren *cis*- und *trans*-1,3-Dibrom-1,3-dimethylcyclobutan³⁾. Für diese – von *Woodward* und *Hoffmann*⁴⁾ später als $[\pi 2_s + \pi 2_a]$ -Cycloaddition formulierte – Reaktion wurde das intermediär auftretende Propenylkation **2a** verantwortlich gemacht^{4,5)}. Obwohl das gleiche Kation auch bei der elektrophilen Addition von Chlorwasserstoff an Propin intermediär entsteht, wurde bei den bisher bekannten Ausführungen dieser Reaktion⁵⁻⁹⁾ nie das Auftreten der entsprechenden Cyclodimeren *trans*- (**9a**) und *cis*-1,3-Dichlor-1,3-dimethylcyclobutan (**10a**) beobachtet. Die vorliegende Untersuchung sollte klären, ob sich die bei Bromwasserstoff und Propin beobachtete Cyclodimerisierung auch mit Chlorwasserstoff und Propin sowie mit höheren 1-Alkinen und Chlorwasserstoff durchführen läßt.

¹⁾ Teil der Dissertation von M. El-Abed, Univ. Karlsruhe 1972.

²⁾ Vorgetragen auf der gemeinsamen Jahrestagung des Vereins Österreichischer Chemiker und der Gesellschaft Deutscher Chemiker in Wien, Mai 1972.

³⁾ K. Griesbaum, Angew. Chem. 76, 782 (1964); Angew. Chem., Int. Ed. Engl. 3, 697 (1964).

⁴⁾ R. B. Woodward und R. Hoffmann, Angew. Chem. 81, 797 (1969); Angew. Chem., Int. Ed. Engl. 8, 781 (1969).

⁵⁾ K. Griesbaum, W. Naegele und G. G. Wanless, J. Am. Chem. Soc. 87, 3151 (1965).

⁶⁾ E. Réboul, C. R. Acad. Sci. 76, 1270 (1873).

⁷⁾ Th. Herbertz, Chem. Ber. 92, 541 (1959).

⁸⁾ T. L. Jacobs und R. N. Johnson, J. Am. Chem. Soc. 82, 6397 (1960).

⁹⁾ H. Hunziker, Chimia 17, 391 (1963).

2. Reaktionsprodukte

Äquimolare Mengen von wasserfreiem Chlorwasserstoff und von jeweils einem der Alkine **1a**-1**d** ließ man in flüssiger Phase reagieren. Bei tiefen Temperaturen, z.B. bei der für die HBr-Propin-Cyclodimerisierung^{3,5} günstigen Temperatur von -70° C, traten – in Übereinstimmung mit früheren Beobachtungen⁸⁾ – selbst nach mehreren Monaten nur geringe (<1%) Umsätze ein. Bei Raumtemperatur konnten innerhalb von einer bis mehreren Wochen Umsätze von 35-80% erreicht werden.

Die nach dem Entfernen von nicht umgesetzten Ausgangsmaterialien verbleibenden Rohaddukte waren in jedem Falle leicht bewegliche, meist dunkelbraune Flüssigkeiten. Ihre Gaschromatogramme zeigten jeweils mehr Komponenten an, als man aufgrund einer einfachen Addition erwartet hätte: Das Gaschromatogramm des Adduktgemisches ausgehend von Propin zeigte drei Hauptkomponenten, deren Anteil am Gesamtprodukt zusammen ca. 85% betrug, sowie ca. 15 weitere Peaks, von denen drei in Anteilen von je 2-4%, die übrigen in Anteilen von weniger als je 1% am Gesamtchromatogramm beteiligt waren. Die Gaschromatogramme der Adduktgemische ausgehend von 1-Butin, 1-Pentin und 1-Hexin zeigten jeweils sechs Hauptkomponenten, die zusammengenommen in jedem Falle über 95% des Gesamtchromatogrammes ausmachten. Durch eine destillative Vortrennung und nachfolgende präparative Gaschromatographie der erhaltenen Fraktionen konnten die vorstehend erwähnten Hauptkomponenten jeweils isoliert und identifiziert werden.

Die drei Hauptkomponenten aus der Umsetzung von Propin mit HCl erwiesen sich der Reihe nach als die aus früheren Untersuchungen⁵⁾ bereits bekannten Verbindungen 2-Chlorpropen (**3a**), 2,2-Dichlorpropan (**8a**) und *trans*-1,3-Dichlor-1,3-dimethylcyclobutan (**9a**). Von den Nebenprodukten dieser Reaktion konnte nur eine Komponente in reiner Form isoliert¹⁰⁾ und als *cis*-1,3-Dichlor-1,3-dimethylcyclobutan (**10a**) aufgeklärt werden.

Die sechs Hauptkomponenten aus der Umsetzung von 1-Butin (1b) mit HCl wurden der Reihe nach als die bekannten Verbindungen 2-Chlor-1-buten¹¹ (3b), *trans*-2-Chlor-2-buten¹¹ (6b), *cis*-2-Chlor-2-buten¹¹ (7b) und 2,2-Dichlorbutan¹² (8b) sowie als die bisher noch nicht bekannten Cyclodimeren *trans*- (9b) und *cis*-1,3-Diäthyl-1,3-dichlorcyclobutan (10b) identifiziert. Ganz analog dazu konnten die jeweiligen sechs Hauptkomponenten aus den Umsetzungen von 1-Pentin (1c) bzw. von 1-Hexin (1d) mit HCl als die entsprechenden 2-Chlor-1-alkene (3c bzw. 3d¹³), *trans*-2-Chlor-2-alkene (6c bzw. 6d¹⁴), *cis*-2-Chlor-2-alkene (7c bzw. 7d¹⁴), 2,2-Dichloralkane (8c bzw. 8d^{13,14}) sowie *trans*- (9c bzw. 9d) und *cis*-1,3-Dialkyl-1,3-dichlorcyclobutane (10c bzw. 10d) erkannt werden.

Die Konstitutionsbeweise für die bisher noch nicht bekannten Komponenten beruhen in jedem Falle auf der völligen Analogie der NMR- (Tab. 1 und 2), IR- und Massenspektren dieser Verbindungen mit denen der entsprechenden bekannten niedrigeren Homologen.

- ¹⁰⁾ E. Schmid, Diplomarbeit, Univ. Karlsruhe (TH) 1973.
- 11) D. G. Ewing und K. A. W. Parry, J. Chem. Soc. B 1970, 970.
- 12) P. Carpentier, Bull. Soc. Chim. France 1 (5), 1407 (1934).

¹³⁾ G. F. Hennion und C. F. Welsh, J. Am. Chem. Soc. 62, 1367 (1940).

¹⁴⁾ G. F. Hennion und J. J. Sheehan, J. Am. Chem. Soc. 71, 1964 (1949).

	$H_2C = C(CI)CH_2R^{a}$	CH ₃ C(C	l) = CHRa)	CH ₃ C(Cl ₂)CH ₂ R ^{b)}
	3		сн	8
 R	$H_2C = C$	trans 6	cis 7	CH_3
н	5.09		4 489	2.18 s
CH3	5.08	5.45 c)	5.58c)	2.00 s
CH ₂ CH ₃	5.10	5.40 ^{d)}	5.52 d)	2.11 s
CH ₂ CH ₂ CH ₃	5.05	5.40 ^{d)}	5.50d)	2.13 s

Tab. 1.	NMR-Parameter	(ppm) von	Mono-	und	Diaddukten	aus der	Reaktion
		HCl	+ HC =	= CC	H ₂ R (1)		

a) In CCl₄ als Lösungsmittel, TMS als innerer Standard.
 b) Ohne Lösungsmittel, TMS als innerer Standard.

⁶⁰ On the Losungstitute, 1 Ms as infinite standard. ⁶¹ Durch Long Range-Kopplung weiter aufgespaltenes Quartett, zentriert um diesen δ -Wert; $J_{HR} = 6.7$ Hz; $J_{HCH_3} = 1.2 - 1.5$ Hz. ⁶¹ Durch Long Range-Kopplung weiter aufgespaltenes Triplett, zentriert um diesen δ -Wert; $J_{HR} = 7$ Hz;

 $J_{\rm HCH_s} = 1.1 - 1.3$ Hz.

Tab. 2. NMR-Parameter von stereoisomeren 1,3-Dialkyl-1,3-dichlorcyclobutanena)

Verbindung	Signal-	Chem. Verschiebung der Ring-CH ₂ in ppm			
R	Isomeres	cjp	A	B	Mittelpunkt
CH3	cis (10a)	dd	2.75	3.26	3.01
CH ₃	trans (9a)	s			2.91
CH ₃ CH ₂	<i>cis</i> (10b)	dd	2.68	3.06	2.87
CH ₃ CH ₂	trans (9b)	S			2.79
CH ₃ CH ₂ CH ₂	<i>cis</i> (10c)	dd	2.68	3.06	2.87
CH ₃ CH ₂ CH ₂	trans (9c)	s		_	2.82
CH ₃ CH ₂ CH ₂ CH ₂	cis (10d)	dd	2.70	3.07	2.86
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂	trans (9d)	S			2.83

a) In CCl₄ als Lösungsmittel, TMS als innerer Standard.

Die in dieser Arbeit erstmals erhaltenen 1,3-Dialkyl-1,3-dichlorcyclobutane 9b-dund 10b-d sind farblose Flüssigkeiten, die im Vakuum ohne merkliche Zersetzung destilliert werden können. Ihre Massenspektren (Tab. 3) zeigen in jedem Falle die für Dichlorverbindungen erwarteten¹⁵⁾ Molekülionen-Triplett- bzw. Bruchstückionen-Dublettsignale. Die NMR-Spektren der trans-Isomeren zeigen jeweils Singulett-, die der *cis*-Isomeren zeigen AA'BB'-Signale für die CH₂-Gruppen im Ring, in Übereinstimmung mit den Spektren anderer cis-trans-isomerer 1,3-Dialkyl-1,3-dihalogencyclobutane^{5, 16)}. Die IR-Spektren aller dieser Cyclodimeren 9 bzw. 10 sind im Bereich zwischen 1500 und 2800 cm⁻¹ optisch leer. Die Spektren der einzelnen Isomerenpaare

¹⁵⁾ J. H. Beynon, Mass Spectrometry and its Application to Organic Chemistry, S. 144-151, McGraw-Hill Book Co, New York, 1962.

¹⁶⁾ K. Griesbaum, Z. Rehman und U.-I. Záhorszky, Angew. Chem. 82, 841 (1970); Angew. Chem., Int. Ed. Engl. 9, 812 (1970).

R CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂	Iso cisb) tram. tram. cis tram. cis tram. cis tram. Literatur ⁵).	meres (10a) (10b) (10b) (10b) (10c) (10c) (10c) (10d) (10d) (10d)	Molekülion M+ <i>m/e</i> 156-154-152 156-154-152 184-152 184-182-180 184-182-180 184-182-180 212-210-208 212-210-208 212-210-208 240-238-236 240-238-236 240-238-236	M+ 21-66-100 24-70-100 11-59-100 11-60-100 15-58-100 16-57-100 10-57-100 10-57-100 10-57-100	Relative Int $(M - CI)^+$ $(M - CI)^+$ 490 - 1440 397 - 1170 185 - 602 200 - 551 220 - 667 190 - 476 237 - 797 452 - 1500 1%	tensitäten der einz (M - HCI) ⁺ 458 - 1140 467 - 1130 354 - 885 460 - 952 220 - 500 229 - 505 173 - 333 281 - 476	$\begin{array}{l} \text{(M - CH}_2\text{CI})^+ \\ (M - CH}_2\text{CI})^+ \\ 1530 - 4600 \\ 1380 - 4100 \\ 1390 - 4340 \\ 1590 - 3710 \\ 860 - 2550 \\ 762 - 2290 \\ 317 - 955 \\ 600 - 1900 \end{array}$	(M/2)+ 8800-25400 7110-22200 7520-20800 6760-18800 5000-15300 5000-15300 25400-76200 1280-4450 1720-6240
CH ₃ CH ₃ CH ₃ CH ₂	cis ^b) trams cis tram: cis tram: 2 tram: Molekulioner Literatur ⁵).	(10a) 5 ^{b)} (9a) (10b) 5 (9b) (10c) 5 (9c) (10d) 5 (9d) npeak mit der	156-154-152 156-154-152 184-182-180 184-182-180 212-210-208 212-210-208 240-238-236 240-238-236 240-238-236 240-238-236	21 - 66 - 100 24 - 70 - 100 11 - 59 - 100 11 - 60 - 100 15 - 58 - 100 14 - 57 - 100 10 - 57 - 100 10 - 57 - 100 10 - 57 - 100	490-1440 397-1170 185-602 200-551 220-667 190-476 237-797 452-1500	458 1140 467 1130 354 885 400 952 229 500 229 505 173 333 281 476	$1530 - 4600 \\ 1380 - 4100 \\ 1590 - 4340 \\ 1200 - 3710 \\ 860 - 2550 \\ 762 - 2290 \\ 317 - 955 \\ 600 - 1900 \\ 600 - 1900 \\ 170 - 1900 \\ 100 - 1000 \\ $	$\begin{array}{c} 8800-25400\\ 7110-22200\\ 7520-20800\\ 6760-18800\\ 5000-15300\\ 5000-15300\\ 25400-76200\\ 1280-4450\\ 1720-6240\end{array}$
CH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₂	tram, cis tram, cis tram, 2 tram, Molekilioner Literatur ⁵ ,	s ^{b)} (9a) (10b) s (9b) (10c) s (9c) s (9c) s (9d) npeak mit der	156 - 154 - 152 184 - 182 - 180 184 - 182 - 180 212 - 210 - 208 212 - 210 - 208 212 - 238 - 236 240 - 238 - 236 240 - 238 - 236 240 - 238 - 236	24 - 70 - 100 11 - 59 - 100 11 - 60 - 100 15 - 58 - 100 14 - 57 - 100 10 - 57 - 100 10 - 57 - 100	397-1170 185-602 200-551 220-667 190-476 237-797 452-1500	4671130 354885 400952 220500 229505 173333 281476	1380 - 4100 $1590 - 4340$ $1200 - 3710$ $860 - 2550$ $762 - 2290$ $317 - 955$ $600 - 1900$	7110 - 22200 $7520 - 20800$ $6760 - 18800$ $5000 - 15300$ $25400 - 76200$ $1280 - 4450$ $1720 - 6240$
CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₁	cis trams cis trams 2 cis 2 trams Molekulioner Literatur ⁵ ,	(10 b) (10 c) (10 c) (10 c) (10 d) (10 d) (10 d) (10 d) (10 d) (10 d)	184 – 182 – 180 184 – 182 – 180 212 – 210 – 208 212 – 210 – 208 2140 – 238 – 236 240 – 238 – 236 240 – 238 – 236 240 – 238 – 236 r niedersten Masse alt	11 - 59 - 100 11 - 60 - 100 15 - 58 - 100 14 - 57 - 100 10 - 57 - 100 10 - 57 - 100 10 - 57 - 100	185 - 602 200 - 551 220 - 667 190 - 476 237 - 797 452 - 1500	354 885 400 952 220 500 229 505 173 333 281 476	1590 - 4340 $1200 - 3710$ $860 - 2550$ $762 - 2290$ $317 - 955$ $600 - 1900$	$7520 - 20800 \\ 6760 - 18800 \\ 5000 - 15300 \\ 25400 - 76200 \\ 1280 - 4450 \\ 1720 - 6240$
CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₁ d ^{al} Bezogen auf den 1 ^{b)} Entuonmen aus	trans cis trans 2 cis 2 trans Molekulioner Literatur ⁵ ,	s (9b) (10c) s (9c) (10d) s (9d) npeak mit der	184 – 182 – 180 212 – 210 – 208 212 – 210 – 208 240 – 238 – 236 240 – 238 – 236 240 – 238 – 236 r niedersten Masse ath	11-60-100 15-58-100 14-57-100 10-57-100 10-57-100 10-57-100 8 100, Genauigkeit ca.	200-551 220-667 190-476 237-797 452-1500	400952 220500 229505 173-333 281476	1200–3710 860–2550 762–2290 317–955 600–1900	6760 - 18800 5000 - 15300 25400 - 76200 1280 - 4450 1720 - 6240
CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₂ CH ₁ CH ₃ CH ₂ CH ₂ CH ₁ ^{e) Bezogen auf den 1 ^{b) Entnommen aus 1}}	cis trans 2 cis 2 trans Molekülioner Literatur ⁵ ,	(10c) s (9c) (10d) s (9d) npeak mit der	212 - 210 - 208 212 - 210 - 208 240 - 238 - 236 240 - 238 - 236 r nicdersten Masse ath	15 - 58 - 100 14 - 57 - 100 10 - 57 - 100 10 - 57 - 100 10 - 57 - 100	220-667 190-476 237-797 452-1500	220 - 500 229 - 505 173 - 333 281 - 476	860-2550 762-2290 317-955 600-1900	5000 - 15300 25400 - 76200 1280 - 4450 1720 - 6240
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH CH ₃ CH ₂ CH ₂ CH ^{a)} Bezogen auf den 1 ^{b)} Entnommen aus	<i>trans</i> 2 <i>cis</i> 2 <i>tran</i> Molekulioner Literatur ⁵ ,	s (9 c) (10 d) s (9 d) npeak mit der	212-210-208 240-238-236 240-238-236 240-238-236 r nicdersten Masse alt	14-57-100 10-57-100 10-57-100 10-57-100 s 100, Genauigkeit ca.	190–476 237–797 452–1500 1%	229-505 173-333 281-476	762 - 2290 317 955 600 1900	25400 - 76200 1280 - 4450 1720 - 6240
CH ₃ CH ₂ CH ₂ CH, CH ₃ CH ₂ CH ₂ CH. B Bezogen auf den 1 ^{b)} Entnommen aus	2 <i>CIS</i> 2 <i>tran</i> u Molekülioner Literatur ⁵⁾ .	(10d) 5 (9d) npeak mit der	240-238-236 240-238-236 r niedersten Masse alt	10-57-100 10-57-100 s 100, Genauigkeit ca.	237-797 452-1500 1%.	173–333 281–476	317955 600-1900	1280-4450 17206240
CH ₃ CH ₂ CH ₂ CH.	2 <i>trans</i> Molekülioner Literatur ⁵⁾	r (9 d) npeak mit der	240-238-236	10-57-100 s 100, Genauigkeit ca.	452-1500	281-476	600 - 1900	17206240
^{a)} Bezogen auf den ¹ ^{b)} Entnommen aus ¹	Molekülioner Literatur ⁵⁾ ,	ıpeak mit der	r nicdersten Masse als	s 100, Genauigkeit ca.	1%.			
	Tab	. 4. Produk	ctverteilungen bei	den Reaktionen Ho	Cl + HC ≡ CCH ₂ R Relative Produktve	t (1) in der flüssige erteilung im Rohg	en Phasc 	3
								(; (
R	Re	aktionszeit	% Umsatz	5-	$CH_3C(CI) = CI$	HR	RCF	2 CH ₂ II
		(q)		$H_2C = \dot{C}CH_2R$ 3	trans 6	cis CH ₃ C(C	Cl ₂)CH ₂ R ^c 8 <i>tran</i> 9	r (is cis
a H		30	. 57	25	Į	- -	9 13	ŝ
b CH ₃		16	64	15	18	9 9	4 24	3
c CH ₃ CH	3	54	79	14	19	7 4	7 11	7
d CH ₃ CH	2CH2	90	57	24	18	7 4	1 9	1

b) Es sind nur die identifizierten Komponenten erfaßt; sie machen zwischen 90 und 98% des Rohgemisches aus.

unterscheiden sich zwar jeweils im Fingerprint-Gebiet, jedoch konnten diese Unterschiede in keinem Falle mit der Geometrie eines Isomeren eindeutig in Beziehung gebracht werden.

In Tab. 4 sind die gaschromatographisch ermittelten Produktverteilungen bei den einzelnen Reaktionen zusammengefaßt. Das Ausmaß der Cyclodimerisierung variierte von 10-27%; die Reaktion mit 1-Butin lieferte die größte (27%), die Reaktion mit 1-Hexin die geringste (10%) Ausbeute an Dimeren¹⁷⁾.

3. Reaktionsablauf

Die Anzahl und die Verteilung der Reaktionsprodukte machen deutlich, daß die elektrophile Addition von HCl an die untersuchten 1-Alkine zumindest unter den hier gewählten Bedingungen nicht so einfach abläuft, wie dies für die Addition von Halogenwasserstoffen an Monoalkylacetylene lange Zeit angenommen worden war¹⁸⁾.

¹⁷⁾ Da alle Reaktionen ohne mechanisches Rühren, d.h. im Zweiphasensystem durchgeführt wurden, können die beobachteten Unterschiede in der Selektivität nicht ausschließlich auf die strukturellen Unterschiede der Substrate zurückgeführt werden. Vorläufige Versuche bei z. Zt. laufenden Arbeiten über die Reaktion von HBr mit 1-Alkinen deuten an, daß die Ausbeute an Cyclodimer-Addukten variieren kann, wenn das Reaktionsgemisch gerührt wird.

¹⁸⁾ Siehe z.B.: T. F. Rutledge, Acetylenes and Allenes: Additions, Cyclization and Polymerization Reactions, S. 167, Reinhold Book Corp., New York 1969.

Durch Protonierung des Ausgangsacetylens 1 entsteht das jeweilige Vinylkation 2, das offenbar als eine der Verzweigungen im Reaktionsablauf fungiert: Kombination von 2 mit Chlorid-Ionen und nachfolgende HCI-Addition liefert die nach den bisherigen Vorstellungen¹⁸⁾ als einzige Produkte erwarteten Markownikoff-Mono- (3) bzw. -Diaddukte (8). Kombination von 2 mit dem Substrat 1 liefert – vermutlich auf dem Wege über das resonanzstabilisierte, 1,3-disubstituierte Cyclobutenylkation 4 – die Cyclodimeren 9 und 10.

Eine zweite Gabelung im Reaktionsgeschehen stellt offenbar das Kation 5 dar, das neben der erwähnten Addition von Chlorid zu 8 auch eine Deprotonierung zu 6 und 7 eingehen kann. Das wurde am Beispiel des 2-Chlor-1-pentens (3c) demonstriert: Reaktion von 3c mit wasserfreiem HCl in der flüssigen Phase lieferte neben unumgesetztem 3c die stereoisomeren 2-Chlor-2-pentene 6c und 7c sowie das Diaddukt 8c. Die relative Produktverteilung war ähnlich der bei Reaktion von 1-Pentin (1c) mit HCl erhaltenen (Tab. 5). Der theoretisch ebenfalls denkbare Weg zu den 2-Chlor-2-alkenen 6 und 7 über das Allen 11 sollte keine wesentliche Rolle spielen, da berichtet wurde, daß unter ganz ähnlichen Bedingungen, wie sie hier angewendet wurden, keine nennenswerten Allen-Acetylen-Isomerisierungen eintraten^{8,19)}.

$$H_2C = C - CH_2R \xrightarrow{-H^+} H_2C = C = CHR \xrightarrow{HCL} 6 + 7$$

Tab. 5. Relative Produktverteilungen von 6c, 7c und 8c bei den Reaktionen HCl + 1c bzw. HCl + 3c

Ausgangsmaterial		Relative $CH_3C(CI) =$	erteilung, Mol-%	
		6c	7c	8c
$CH_{3}CH_{2}CH_{2}C \equiv CH$	(1c)	26	10	64
$CH_3CH_2CH_2C \!=\! CH_2$	(3c)	23	6	71
Cl				

Der Badischen Anilin- & Soda-Fabrik, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für wertvolle Sachbeihilfen. Der eine von uns (M. E-A.) dankt dem Deutschen Akademischen Austauschdienst für die Gewährung eines Stipendiums.

Experimenteller Teil

Allgemeines

Die Reaktionen wurden in dickwandigen, zylindrischen Glasampullen durchgeführt. Die gasförmigen Ausgangsstoffe wurden über ein Vakuumsystem, die flüssigen direkt in die Ampulle eingeführt. Nach Beendigung der Reaktionen wurden die Ampullen jeweils mit flüssiger Luft gekühlt, geöffnet, mit der Öffnung an einen Trockenturm angeschlossen und durch langsames Erwärmenlassen der Ampullen nicht umgesetzter Chlorwasserstoff sowie -- wo zutreffend -- nicht umgesetztes niedrigsiedendes Acetylen weitgehend entfernt.

¹⁹⁾ B. S. Charleston, C. K. Dalton, S. S. Washburne und D. R. Dalton, Tetrahedron Lett. 1969, 5147.

Die NMR-Spektren wurden mit einem Varian-A-60-, die IR-Spektren mit einem Beckman IR-8-Gerät aufgenommen. Für die präparativen Trennungen diente ein Gaschromatograph Modell F-21 der Firma Perkin Elmer.

Reaktion von HCl mit Propin (1a)

Ein Gemisch aus 17.6 g (0.44 mol) 1a und 16 g (0.44 mol) wasserfreiem Chlorwasserstoff ließ man 30 d bei Raumtemp. reagieren. Die ursprünglich farblose Flüssigkeit wurde erst gelblich und schließlich dunkelbraun. Nach weitgehendem Entfernen der nicht umgesetzten Ausgangsmaterialien verblieben 23 g einer leicht beweglichen, homogenen, dunkelbraunen Flüssigkeit.

Von diesem Rohprodukt wurden 21.2 g destilliert: Frakt. 1, Sdp. 20-23 °C/90 Torr, 5.3 g; Frakt. 2, Sdp. 20-23 °C/17 Torr, 7.1 g; Frakt. 3, Sdp. 40 °C/0.4 Torr, 3.3 g; Rückstand 3 g. Aus Fraktion 1 wurden mittels PGC (Säule 0.8×270 cm, 5% Nitrilsiliconöl-XE-60 auf Chromosorb G, 50-155 °C bei 3°/min, 200 ml N₂/min) die Komponenten **3a** und **8a** in reiner Form, aus Fraktion 2 die Komponente **9a** in reiner Form, die Komponente **10a** dagegen verunreinigt mit einem unbekannten Nebenprodukt abgetrennt. Die Reindarstellung von **10a** gelang bei Verwendung einer Carbowax-20M-Säule ¹⁰.

Für die gaschromatographische qualitative Analyse der Rohprodukte wurden die stoffspezifischen Korrekturfaktoren der abgetrennten Komponenten, bezogen auf Benzol, bestimmt. Sie waren: 3a, f = 1.45; 8a, f = 1.94; 9a, f = 1.38.

Reaktion von HCl mit 1-Butin (1b)

Ebenso wurden aus 27 g (0.5 mol) 1b und 17.5 g (0.48 mol) HCl nach 2 Monaten als Rohprodukt 43.5 g einer dunkelbraunen Flüssigkeit erhalten.

Die vereinigten Rohprodukte aus mehreren Ansätzen (74 g) wurden destilliert: Frakt. 1, Sdp. 21°C/85-40 Torr, 10.6 g; Frakt. 2, Sdp. 21°C/35-40 Torr, 4.8 g, reine Komponente **8b**; Frakt. 3, Sdp. 27-28°C/0.5 Torr, 3.7 g; Frakt. 4, Sdp. 33-37°C/0.7 Torr, 10 g; Rückstand, 9.5 g. Aus Fraktion 1 wurden mittels PGC (Säule 0.8 × 450 cm, 5% Di-n-decylphthalat auf Chromosorb G, 50°C, 110 ml N₂/min) die Monoaddukte **3b**, **6b** und **7b** isoliert. Aus Fraktion 4 wurden, nach Zusatz von 1.5 ml CCl₄ zur Verminderung der Viskosität, ebenfalls präparativ (Säule 0.8 × 450 cm, 5% Nitrilsiliconöl-XE-60 auf Chromosorb G, 104°C, 130 ml N₂/min) die Cyclodimer-Addukte **9b** und **10b** als farblose Flüssigkeiten isoliert.

trans-1,3-Diäthyl-1,3-dichlorcyclobutan (**9b**): Sdp. 188 °C/760 Torr (leichte Zers.); $n_D^{s_0}$ 1.4605, 1R (als Film): 2980, 2950, 2860, 2860, 1460, 1418, 1381, 1289, 1260, 1170, 1145, 1125, 1088, 990, 935, 860, 790 cm⁻¹

C8H14Cl2 (181.1) Ber. C 53.05 H 7.79 Cl 39.15 Gef. C 52.83 H 7.85 Cl 39.04

cis-1,3-Diäthyl-1,3-dichlorcyclobutan (10b): n_D^{20} 1.4643; IR (als Film): 2980, 2940, 2890, 2860, 1460, 1415, 1381, 1285, 1215, 1150, 1090, 995, 938, 818 cm⁻¹.

Die stoffspezifischen Korrekturfaktoren der isolierten Komponenten, bez. auf Benzol, waren: **3b**, f = 1.45; **8b**, f = 1.92; **9b**, f = 1.42.

Reaktion von HCl mit 1-Pentin (1c)

Ein Gemisch aus 27.6 g (0.4 mol) 1c und 14.7 g (0.4 mol) HCl ergab unter den vorstehenden Bedingungen nach 35 d 37.9 g einer dunkelbraunen Flüssigkeit als Rohprodukt.

Die vereinigten Rohprodukte aus mehreren Ansätzen (85.3 g) wurden destilliert: Frakt. 1, Sdp. $24-21^{\circ}C/55-40$ Torr, 10.5 g; Frakt. 2, Sdp. $27-30^{\circ}C/20$ Torr, 9.3 g; Frakt. 3, Sdp. $31^{\circ}C/18$ Torr, 1.7 g; Frakt. 4, Sdp. $22^{\circ}C/12-13$ Torr (Lit. ²⁰⁾ Sdp. $36-37^{\circ}C/20$ Torr),

²⁰⁾ Bei der Umsetzung von 2-Pentanon mit PCl₅ wurde neben 2,2-Dichlorpentan ein Monochlorid (Sdp. 88-89°C, n²₂ 1.421) erhalten. Der Autor nahm an, daß es sich dabei um 3c handelte, er ließ jedoch die Möglichkeit offen, daß es auch eines der isomeren 2-Chlor-2-pentene 6c oder 7c sein könnte: *M. Bourguel*, C. R. Acad. Sci. 177, 823 (1923).

7.3 g, reines 8c; Frakt. 5, Sdp. 58°C/0.7 Torr, 4.8 g; Frakt. 6, Sdp. 59-62°C/0.5 Torr, 8 g; Rückstand 7.8 g. Aus Fraktion 1 wurden mittels PGC (Säule 0.8×450 cm, 5% Di-n-decyl-phthalat auf Chromosorb G, 50°C, 160 ml N₂/min) die reinen Komponenten 3c, 6c und 7c, aus Fraktion 6 wurden (Säule 0.8×450 cm, 5% Nitrilsiliconöl-XE-60 auf Chromosorb G, 135°C, 180 ml N₂/min) die Komponenten 9c und 10c jeweils in reiner Form isoliert.

2-Chlor-I-penten²⁰ (**3c**): n_D^{20} 1.4190. IR (als Film): 3020, 2940, 1640, 1470, 1170, 1148, 880 cm⁻¹.

trans-2-Chlor-2-penten (6c): n_D^{20} 1.4250. IR (als Film): 3020, 2940, 1678, 1466, 1442, 1385, 1154, 1039, 828 cm⁻¹.

cis-2-Chlor-2-penten (7c): n_D^{20} 1.4230. IR (CC1₄): 3030, 2940, 1730, 1670, 1465, 1442, 1388, 1149, 1082, 885 cm⁻¹.

trans-1,3-Dichlor-1,3-dipropylcyclobutan (9c): Sdp. 224°C (leichte Zers.); n_{b}^{∞} 1.4160; IR (als Film): 2970, 2940, 2885, 2850, 1465, 1415, 1380, 1270, 1240, 1170, 1150, 1110, 970, 900, 810, 740 cm⁻¹.

C10H18Cl2 (209.2) Ber. C 57.42 H 8.67 Cl 33.90 Gef. C 57.76 H 8.75 Cl 33.12

cis-1,3-Dichlor-1,3-dipropylcyclobutan (**10***c*): n_{D}^{20} 1.4649; 1R (als Film): 2970, 2940, 2885, 2850, 1465, 1415, 1380, 1278, 1250, 1210, 1150, 1110, 1015, 1000, 905, 792, 740 cm⁻¹.

Die stoffspezifischen Korrekturfaktoren der isolierten Komponenten, bez. auf Benzol, waren: 3c, f = 1.48; 8c, f = 1.93; 9c, f = 1.50.

Reaktion von HCl mit 1-Hexin (1d)

35.7 g (0.43 mol) 1d und 15.8 g (0.43 mol) HCl lieferten 50 g einer dunkelroten Flüssigkeitals Rohprodukt.

Die vereinigten Rohprodukte aus 2 Ansätzen (95.4 g) wurden destilliert, wobei 14.6 g des Diadduktes 8d vom Sdp. 46°C/20 Torr (Lit.¹⁴⁾ Sdp. 68°C/49 Torr) in reiner Form erhalten wurden. Aus einer niedrigsiedenden Fraktion (Sdp. $37-47^{\circ}$ C/40 Torr; 27.6 g) wurden mittels PGC (Säule 0.8 × 450 cm, 5% Nitrilsiliconöl-XE-60 auf Chromosorb G, 70°C, 200 ml N₂/min) ein Gemisch der Komponenten 3d und 6d, sowie reines 7d isoliert. Aus einer höhersiedenden Fraktion (Sdp. 78-90°C/0.15 Torr; 3 g) wurden auf der gleichen Säule, jedoch bei 135°C Säulentemp., die Komponenten 9d und 10d isoliert.

trans-1,3-Dibutyl-1,3-dichlorcyclobutan (9d): Sdp. 234–235°C/760 Torr (leichte Zers.); n_{D}^{20} 1.4630; IR (als Film): 2970, 2940, 2870, 1465, 1418, 1380, 1270, 1218, 1170, 970, 830, 728 cm⁻¹.

C12H22Cl2 (237.2) Ber. C 60.76 H 9.35 Cl 29.89 Gef. C 61.62 H 9.45 Cl 28.55

cis-1,3-Dibutyl-1,3-dichlorcyclobutan (10d): n_{20}^{∞} 1.4660; IR (als Film): 2970, 2940, 2870, 1465, 1415, 1380, 1295, 1235, 1205, 1145, 1030, 830, 730 cm⁻¹.

Reaktion von HCl mit 2-Chlor-1-penten (3c): Ein Gemisch aus 0.15 g (1.4 mmol) 3c und 0.036 g (1.0 mmol) wasserfreiem HCl ließ man 4 d bei Raumtemp, in einer Ampulle reagieren. Der nach dem Öffnen der Ampulle verbleibende flüssige Rückstand wurde gaschromatographisch untersucht (Säule 0.3×500 cm; 5% Di-n-decylphthalat auf Chromosorb G, $50-140^{\circ}$ C bei 2°/min; 24 ml N₂/min) und zeigte die in Tab. 5 angegebene Zusammensetzung. [66/73]